Responses of HIFs to hypoxia or hyperoxia

Under normoxic conditions, hydroxylation at two proline residues by prolyl hydroxylases (PHDs) promotes the association between hypoxia-inducible factor-α (HIFα) and the von Hippel–Lindau (VHL) gene product, leading to HIFα destruction via the ubiquitin–proteasome pathway,,. During hypoxia, this process is suppressed due to the lack of oxygen as a substrate for PHDs, allowing the HIFα subunit to escape proteolysis. After stabilization, HIFα dimerizes with HIF1β, and the heterodimer translocates to the nucleus to activate the transcription of target genes that contain hypoxia response elements (HREs) in their promoter. These target genes control essential physiological functions such as hypoxia adaptation, cell metabolism, inflammation, apoptosis and angiogenesis. Importantly, gene repression by HIFs frequently occurs as an indirect response that involves the transcriptional induction of HIF-dependent microRNAs (miRNAs) and the subsequent repression of target gene expression–. Furthermore, miRNAs have also been shown to participate in a feedforward pathway via an increase in HIF responses through PHD1 repression to provide organ protection during ischaemia–reperfusion injury. HIF stabilization by HIF–PHD inhibitors (such as daprodustat, dimethyloxalylglycine, roxadustat and vadadustat) might be a potential therapeutic approach for acute cardiovascular disease,. In addition, HIF activity is also regulated by hydroxylation of a single conserved asparaginyl residue at the C-terminal transactivation domain by the oxygen-dependent asparaginyl hydroxylase factor inhibiting HIF1 (FIH1). During hyperoxia, high oxygen levels prevent the hypoxic inhibition of PHDs during conditions such as inflammation, ischaemia or metabolic imbalance. Attenuated HIF stabilization can dampen adaptive responses, such as angiogenic responses, or cardioprotection by adenosine generation and signalling (for example, through decreased adenosine A2A receptor signalling). As such, hyperoxia is associated with attenuated adenosine production and signalling, abolished preconditioning of the heart, suppression of adaptive metabolic responses, and reduced capacity of HIFs to dampen inflammation. Of note, given that HIF–PHD inhibitors will still be functional in stabilizing HIFs, even during hyperoxia, HIF activators can be considered as a cardioprotective strategy that works independently of the level of oxygen therapy that a patient receives. DMOG, dimethyloxalylglycine; OH, hydroxylation; Ub, ubiquitination; VEGF, vascular endothelial growth factor.
Responses of HIFs to hypoxia or hyperoxia

Publication

Interplay of hypoxia-inducible factors and oxygen therapy in cardiovascular medicine. (2024) Yafen Liang, et al. Nat Rev Cardiol. ;20(11):723-737. Figure: F1.

Gene mentions


Organism Group Word Match Source NCBI Symbol NCBI ID
Homo sapiens Primates HIFa HIFA famplex_relations HIF1A 3091
Homo sapiens Primates HIFa HIFA famplex_relations EPAS1 2034
Homo sapiens Primates HIFa HIFA famplex_relations HIF3A 64344
Homo sapiens Primates VHL VHL ncbigene_symbol VHL 7428
Homo sapiens Primates HIFα HIF famplex_relations ARNT 405
Homo sapiens Primates HIFα HIF famplex_relations ARNT2 9915
Homo sapiens Primates HIFα HIF famplex_relations BMAL1 406
Homo sapiens Primates FIH FIH ncbigene_synonym CASR 846
Homo sapiens Primates HIF1ẞ HIF1 ncbigene_synonym SETD2 29072
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMA1 5682
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMA2 5683
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMA3 5684
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMA4 5685
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMA5 5686
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMA6 5687
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMA7 5688
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMA8 143471
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMB1 5689
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMB10 5699
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMB2 5690
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMB3 5691
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMB4 5692
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMB5 5693
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMB6 5694
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMB7 5695
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMB8 5696
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMB9 5698
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMC1 5700
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMC2 5701
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMC3 5702
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMC4 5704
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMC5 5705
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMC6 5706
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMD1 5707
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMD10 5716
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMD11 5717
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMD12 5718
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMD13 5719
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMD14 10213
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMD2 5708
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMD3 5709
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMD4 5710
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMD5 5711
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMD6 9861
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMD7 5713
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMD8 5714
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMD9 5715
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSME1 5720
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSME2 5721
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSME3 10197
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations PSMF1 9491
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations SEM1 7979
Homo sapiens Primates Proteasome- PROTEASOME famplex_relations USP5 8078
Homo sapiens Primates PHDs PHD ncbigene_synonym PDC 5132
Homo sapiens Primates miRNA-122 MIRNA122 ncbigene_synonym MIR122 406906
Homo sapiens Primates .EPO EPO ncbigene_symbol EPO 2056
Homo sapiens Primates .EPO EPO ncbigene_synonym TIMP1 7076
Homo sapiens Primates .EPO EPO ncbigene_synonym EPX 8288
Homo sapiens Primates GLUT1 GLUT1 ncbigene_synonym SLC2A1 6513
Homo sapiens Primates VEGF VEGF ncbigene_synonym VEGFA 7422
Homo sapiens Primates VEGF VEGF famplex_relations VEGFB 7423
Homo sapiens Primates VEGF VEGF famplex_relations VEGFC 7424
Homo sapiens Primates VEGF VEGF famplex_relations VEGFD 2277
Homo sapiens Primates VEGF VEGF famplex_relations PGF 5228
Homo sapiens Primates PGK1 PGK1 ncbigene_symbol PGK1 5230

Chemical mentions

Word Match MeSH Name ChEBI
Prolyl prolyl chebi:32874
inhibitors inhibitors inhibitor chebi:35222
Nucleus nucleus nucleus chebi:33252

Disease mentions

Word Match MeSH Name DOID